Animations are very important to create a great user experience. Stationary objects must overcome inertia as they start moving. Objects in motion have momentum and rarely come to a stop immediately. Animations allow you to convey physically believable motion in your interface.


React Native provides two complementary animation systems: Animated for granular and interactive control of specific values, and LayoutAnimation for animated global layout transactions.

React Native提供了两套相互补充的动画系统: 基于值处理组件交互动画的Animated和 处理整体布局过渡的LayoutAnimation

Animated API

The Animated API is designed to make it very easy to concisely express a wide variety of interesting animation and interaction patterns in a very performant way. Animated focuses on declarative relationships between inputs and outputs, with configurable transforms in between, and simple start/stop methods to control time-based animation execution.

Animated API 使用一种简洁、高效的方式来创建丰富的动画和良好的交互模式。Animated 声明输入和输出之间的关系,并设置变换的过程,最后通过简单的start/stop方法来控制时序动画的执行。

Animated exports four animatable component types: View, Text, Image, and ScrollView, but you can also create your own using Animated.createAnimatedComponent().

Animated内置四种动画组件:ViewTextImageScrollView,也可以使用 Animated.createAnimatedComponent() 来创建需要的组件。

For example, a container view that fades in when it is mounted may look like this:


import React from 'react';
import { Animated, Text, View } from 'react-native';

class FadeInView extends React.Component {
  state = {
    fadeAnim: new Animated.Value(0),  // Initial value for opacity: 0

  componentDidMount() {
    Animated.timing(                  // Animate over time
      this.state.fadeAnim,            // The animated value to drive
        toValue: 1,                   // Animate to opacity: 1 (opaque)
        duration: 10000,              // Make it take a while
    ).start();                        // Starts the animation

  render() {
    let { fadeAnim } = this.state;

    return (
      <Animated.View                 // Special animatable View
          opacity: fadeAnim,         // Bind opacity to animated value

// You can then use your `FadeInView` in place of a `View` in your components:
export default class App extends React.Component {
  render() {
    return (
      <View style={{flex: 1, alignItems: 'center', justifyContent: 'center'}}>
        <FadeInView style={{width: 250, height: 50, backgroundColor: 'powderblue'}}>
          <Text style={{fontSize: 28, textAlign: 'center', margin: 10}}>Fading in</Text>

Let’s break down what’s happening here. In the FadeInView constructor, a new Animated.Value called fadeAnim is initialized as part of state. The opacity property on the View is mapped to this animated value. Behind the scenes, the numeric value is extracted and used to set opacity.


When the component mounts, the opacity is set to 0. Then, an easing animation is started on the fadeAnim animated value, which will update all of its dependent mappings (in this case, just the opacity) on each frame as the value animates to the final value of 1.


This is done in an optimized way that is faster than calling setState and re-rendering.
Because the entire configuration is declarative, we will be able to implement further optimizations that serialize the configuration and runs the animation on a high-priority thread.


动画配置(Configuring animations)

Animations are heavily configurable. Custom and predefined easing functions, delays, durations, decay factors, spring constants, and more can all be tweaked depending on the type of animation.


Animated provides several animation types, the most commonly used one being Animated.timing(). It supports animating a value over time using one of various predefined easing functions, or you can use your own. Easing functions are typically used in animation to convey gradual acceleration and deceleration of objects.


By default, timing will use a easeInOut curve that conveys gradual acceleration to full speed and concludes by gradually decelerating to a stop. You can specify a different easing function by passing a easing parameter. Custom duration or even a delay before the animation starts is also supported.

默认情况下,timing使用渐进渐出的动画效果——逐渐加速到全速进入,逐渐减速到停止动画。为easing付不同的参数,可以执行不同的缓动函数,也可以为动画设置 durationdelay

For example, if we want to create a 2-second long animation of an object that slightly backs up before moving to its final position:


Animated.timing(this.state.xPosition, {
  toValue: 100,
  easing: Easing.back(),
  duration: 2000,

Take a look at the Configuring animations section of the Animated API reference to learn more about all the config parameters supported by the built-in animations.


动画组合(Composing animations)

Animations can be combined and played in sequence or in parallel. Sequential animations can play immediately after the previous animation has finished, or they can start after a specified delay. The Animated API provides several methods, such as sequence() and delay(), each of which simply take an array of animations to execute and automatically calls start()/stop() as needed.

多个动画可以组合起来,以串行或者并行的方式执行。串行动画是一个接着一个自动执行,中间可以设置一些延迟。Animated API提供了 sequence()delay() 等方法,可以将他们组合成数组,调用start()/stop()来自动执行。

For example, the following animation coasts to a stop, then it springs back while twirling in parallel:


  // decay, then spring to start and twirl
  Animated.decay(position, {
    // coast to a stop
    velocity: {x: gestureState.vx, y: gestureState.vy}, // velocity from gesture release
    deceleration: 0.997,
    // after decay, in parallel:
    Animated.spring(position, {
      toValue: {x: 0, y: 0}, // return to start
    Animated.timing(twirl, {
      // and twirl
      toValue: 360,
]).start(); // start the sequence group

If one animation is stopped or interrupted, then all other animations in the group are also stopped. Animated.parallel has a stopTogether option that can be set to false to disable this.


You can find a full list of composition methods in the Composing animations section of the Animated API reference.


动画合并(Combining animated values)

You can combine two animated values via addition, multiplication, division, or modulo to make a new animated value.


There are some cases where an animated value needs to invert another animated value for calculation. An example is inverting a scale (2x –> 0.5x):

某些情况下,需要两个动画值是反比例关系,如下例所示的反转缩放(2x 到 0.5x):

const a = new Animated.Value(1);
const b = Animated.divide(1, a);

Animated.spring(a, {
  toValue: 2,


Each property can be run through an interpolation first. An interpolation maps input ranges to output ranges, typically using a linear interpolation but also supports easing functions. By default, it will extrapolate the curve beyond the ranges given, but you can also have it clamp the output value.


A simple mapping to convert a 0-1 range to a 0-100 range would be:


  inputRange: [0, 1],
  outputRange: [0, 100],

For example, you may want to think about your Animated.Value as going from 0 to 1, but animate the position from 150px to 0px and the opacity from 0 to 1. This can easily be done by modifying style from the example above like so:


    opacity: this.state.fadeAnim, // Binds directly
    transform: [{
      translateY: this.state.fadeAnim.interpolate({
        inputRange: [0, 1],
        outputRange: [150, 0]  // 0 : 150, 0.5 : 75, 1 : 0

interpolate() supports multiple range segments as well, which is handy for defining dead zones and other handy tricks. For example, to get an negation relationship at -300 that goes to 0 at -100, then back up to 1 at 0, and then back down to zero at 100 followed by a dead-zone that remains at 0 for everything beyond that, you could do:


  inputRange: [-300, -100, 0, 100, 101],
  outputRange: [300, 0, 1, 0, 0],

Which would map like so:


Input | Output
  -400|    450
  -300|    300
  -200|    150
  -100|      0
   -50|    0.5
     0|      1
    50|    0.5
   100|      0
   101|      0
   200|      0

interpolate() also supports mapping to strings, allowing you to animate colors as well as values with units. For example, if you wanted to animate a rotation you could do:


  inputRange: [0, 360],
  outputRange: ['0deg', '360deg'],

interpolate() also supports arbitrary easing functions, many of which are already implemented in the Easing module. interpolate() also has configurable behavior for extrapolating the outputRange. You can set the extrapolation by setting the extrapolate, extrapolateLeft, or extrapolateRight options. The default value is extend but you can use clamp to prevent the output value from exceeding outputRange.


动态值跟踪(Tracking dynamic values)

Animated values can also track other values. Just set the toValue of an animation to another animated value instead of a plain number. For example, a “Chat Heads” animation like the one used by Messenger on Android could be implemented with a spring() pinned on another animated value, or with timing() and a duration of 0 for rigid tracking. They can also be composed with interpolations:

动画值可以用来追踪另一个值。设置动画的toValue值为另一个动画即可,比如,Android的Messenger中的“Chat Heads”动画可以使用spring()来跟定另一个动画即可,可以使用timing()和0值得duration来强制跟进,也可以使用插值动画:

Animated.spring(follower, {toValue: leader}).start();
Animated.timing(opacity, {
  toValue: pan.x.interpolate({
    inputRange: [0, 300],
    outputRange: [1, 0],

The leader and follower animated values would be implemented using Animated.ValueXY(). ValueXY is a handy way to deal with 2D interactions, such as panning or dragging. It is a simple wrapper that basically contains two Animated.Value instances and some helper functions that call through to them, making ValueXY a drop-in replacement for Value in many cases. It allows us to track both x and y values in the example above.


手势跟踪(Tracking gestures)

Gestures, like panning or scrolling, and other events can map directly to animated values using Animated.event. This is done with a structured map syntax so that values can be extracted from complex event objects. The first level is an array to allow mapping across multiple args, and that array contains nested objects.


For example, when working with horizontal scrolling gestures, you would do the following in order to map event.nativeEvent.contentOffset.x to scrollX (an Animated.Value):


   // scrollX = e.nativeEvent.contentOffset.x
   [{ nativeEvent: {
        contentOffset: {
          x: scrollX

When using PanResponder, you could use the following code to extract the x and y positions from gestureState.dx and gestureState.dy. We use a null in the first position of the array, as we are only interested in the second argument passed to the PanResponder handler, which is the gestureState.


  [null, // ignore the native event
  // extract dx and dy from gestureState
  // like 'pan.x = gestureState.dx, pan.y = gestureState.dy'
  {dx: pan.x, dy: pan.y}

响应当前的动画值(Responding to the current animation value)

You may notice that there is no obvious way to read the current value while animating. This is because the value may only be known in the native runtime due to optimizations. If you need to run JavaScript in response to the current value, there are two approaches:


  • spring.stopAnimation(callback) will stop the animation and invoke callback with the final value. This is useful when making gesture transitions.
  • spring.addListener(callback) will invoke callback asynchronously while the animation is running, providing a recent value. This is useful for triggering state changes, for example snapping a bobble to a new option as the user drags it closer, because these larger state changes are less sensitive to a few frames of lag compared to continuous gestures like panning which need to run at 60 fps.

  • spring.stopAnimation(callback)会在动画停止调用callback时,传入当前位置。当创建手势过度时,这可以用得上。
  • spring.addListener(callback)会在动画执行时异步回调callback,传入一个近似值。可以用在状态的更新上,比如当用户拖进时,打开新的选项,其中的延迟在这种情况下是可以接受的——60FPS下基本无感。

Animated is designed to be fully serializable so that animations can be run in a high performance way, independent of the normal JavaScript event loop. This does influence the API, so keep that in mind when it seems a little trickier to do something compared to a fully synchronous system. Check out Animated.Value.addListener as a way to work around some of these limitations, but use it sparingly since it might have performance implications in the future.


使用本地驱动(Using the native driver)

The Animated API is designed to be serializable. By using the native driver, we send everything about the animation to native before starting the animation, allowing native code to perform the animation on the UI thread without having to go through the bridge on every frame. Once the animation has started, the JS thread can be blocked without affecting the animation.

Animated设置为序列动画,使用native driver,可以在动画开始之前将其发送到本地,允许本地程序在UI线程高效的完成动画,而不用每帧都通过Bridge通信。动画开始之后,JS线程的堵塞不会影响动画的执行。

Using the native driver for normal animations is quite simple. Just add useNativeDriver: true to the animation config when starting it.

使用本地驱动是一个非常简单的过程,只需要在动画配置中简单的添加useNativeDriver: true即可。

Animated.timing(this.state.animatedValue, {
  toValue: 1,
  duration: 500,
  useNativeDriver: true, // <-- Add this

Animated values are only compatible with one driver so if you use native driver when starting an animation on a value, make sure every animation on that value also uses the native driver.


The native driver also works with Animated.event. This is specially useful for animations that follow the scroll position as without the native driver, the animation will always run a frame behind the gesture due to the async nature of React Native.

本地驱动也可以用于Animated.event。在没有本地驱动的位置滚动相关的动画中非常有用,由于React Native的异步机制,总是会有一帧动画紧跟手势。

<Animated.ScrollView // <-- Use the Animated ScrollView wrapper
  scrollEventThrottle={1} // <-- Use 1 here to make sure no events are ever missed
        nativeEvent: {
          contentOffset: {y: this.state.animatedValue},
    {useNativeDriver: true} // <-- Add this

You can see the native driver in action by running the RNTester app, then loading the Native Animated Example. You can also take a look at the source code to learn how these examples were produced.

运行RNTester app打开Native Animated 示例查看本地驱动的用法。也可以查看源代码获取等多的信息。


Not everything you can do with Animated is currently supported by the native driver. The main limitation is that you can only animate non-layout properties: things like transform and opacity will work, but flexbox and position properties will not. When using Animated.event, it will only work with direct events and not bubbling events. This means it does not work with PanResponder but does work with things like ScrollView#onScroll.


When an animation is running, it can prevent VirtualizedList components from rendering more rows. If you need to run a long or looping animation while the user is scrolling through a list, you can use isInteraction: false in your animation’s config to prevent this issue.

当动画运行的时候,会阻止VirtualizedList组件中的行渲染。如果需要在列表滚动时,运行一个长动画,需要在动画配置中使用isInteraction: false来防止这个问题。

切记(Bear in mind)

While using transform styles such as rotateY, rotateX, and others ensure the transform style perspective is in place. At this time some animations may not render on Android without it. Example below.


    transform: [
      {scale: this.state.scale},
      {rotateY: this.state.rotateY},
      {perspective: 1000}, // without this line this Animation will not render on Android while working fine on iOS

其他示例(Additional examples)

The RNTester app has various examples of Animated in use:


LayoutAnimation API

LayoutAnimation allows you to globally configure create and update animations that will be used for all views in the next render/layout cycle. This is useful for doing flexbox layout updates without bothering to measure or calculate specific properties in order to animate them directly, and is especially useful when layout changes may affect ancestors, for example a “see more” expansion that also increases the size of the parent and pushes down the row below which would otherwise require explicit coordination between the components in order to animate them all in sync.


Note that although LayoutAnimation is very powerful and can be quite useful, it provides much less control than Animated and other animation libraries, so you may need to use another approach if you can’t get LayoutAnimation to do what you want.


Note that in order to get this to work on Android you need to set the following flags via UIManager:


UIManager.setLayoutAnimationEnabledExperimental &&
import React from 'react';
import {
} from 'react-native';

const { UIManager } = NativeModules;

UIManager.setLayoutAnimationEnabledExperimental &&

export default class App extends React.Component {
  state = {
    w: 100,
    h: 100,

  _onPress = () => {
    // Animate the update
    this.setState({w: this.state.w + 15, h: this.state.h + 15})

  render() {
    return (
      <View style={styles.container}>
        <View style={[styles.box, {width: this.state.w, height: this.state.h}]} />
        <TouchableOpacity onPress={this._onPress}>
          <View style={styles.button}>
            <Text style={styles.buttonText}>Press me!</Text>

const styles = StyleSheet.create({
  container: {
    flex: 1,
    alignItems: 'center',
    justifyContent: 'center',
  box: {
    width: 200,
    height: 200,
    backgroundColor: 'red',
  button: {
    backgroundColor: 'black',
    paddingHorizontal: 20,
    paddingVertical: 15,
    marginTop: 15,
  buttonText: {
    color: '#fff',
    fontWeight: 'bold',

This example uses a preset value, you can customize the animations as you need, see LayoutAnimation.js for more information.


其他提醒(Additional notes)


requestAnimationFrame is a polyfill from the browser that you might be familiar with. It accepts a function as its only argument and calls that function before the next repaint. It is an essential building block for animations that underlies all of the JavaScript-based animation APIs. In general, you shouldn’t need to call this yourself - the animation APIs will manage frame updates for you.



As mentioned in the Direct Manipulation section, setNativeProps allows us to modify properties of native-backed components (components that are actually backed by native views, unlike composite components) directly, without having to setState and re-render the component hierarchy.

Direct Manipulation文中中说的一样,可以使用setNativeProps直接修改原生组件(有原生视图直接实现,跟复合视图不同),而不需要通过setState来间接重绘。

We could use this in the Rebound example to update the scale - this might be helpful if the component that we are updating is deeply nested and hasn’t been optimized with shouldComponentUpdate.


If you find your animations with dropping frames (performing below 60 frames per second), look into using setNativeProps or shouldComponentUpdate to optimize them. Or you could run the animations on the UI thread rather than the JavaScript thread with the useNativeDriver option. You may also want to defer any computationally intensive work until after animations are complete, using the InteractionManager. You can monitor the frame rate by using the In-App Developer Menu “FPS Monitor” tool.

如果动画掉帧,可以使用setNativePropsshouldComponentUpdate优化,或者通过useNativeDriver option启用UI线程。也可以使用InteractionManager将大量的计算推迟到动画完成后。通过App内置的开发者菜单中的“FPS Monitor”工具来监测性能。